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THE EFFECT OF NUMERICAL QUADRATURE IN THE 
p-VERSION OF THE FINITE ELEMENT METHOD 

UDAY BANERJEE AND MANIL SURI 

ABSTRACT. We investigate the use of numerical quadrature in the p-version of 
the finite element method. We describe a set of minimal conditions that the 
quadrature rules should satisfy, for various types of elements. Under sufficient 
assumptions of smoothness, we establish optimality of the asymptotic rate of 
convergence. Some computational results are presented, which illustrate under 
what conditions overintegration may be useful. 

1. INTRODUCTION 

The accuracy in terms of the asymptotic rate of convergence of finite element 
calculations is affected by many factors. One of these is the accuracy of quadra- 
ture schemes employed to calculate the components of the stiffness (and mass) 
matrix and the load vector. The classical finite element method, called the h- 
version, increases accuracy by refining the mesh while keeping fixed the degree p 
of piecewise polynomials used. For this, the dependence of the convergence rate 
on the accuracy of quadrature used has been thoroughly investigated (see, for 
instance, [4, 5]). The basic rule to ensure optimal (asymptotic) convergence is to 
use an integration scheme for which the asymptotic order of the error between 
uh (the approximation using exact integration) and iuh (the approximation us- 
ing numerical integration) is no worse than that for the error between uh and 
u (the exact solution). Suppose we consider a second-order elliptic problem. 
Then for piecewise polynomials of degree p on a quasiuniform family of tri- 
angular meshes, for example, this is achieved by ensuring that the quadrature 
scheme is exact for all polynomials of degree < 2p - 2 on every triangle. 

The last decade has seen the rise in popularity of two new versions of the 
finite element method, the p- and (h -p)-versions. In the p-version, the mesh is 
kept fixed and the degree p of polynomials used is increased for accuracy. The 
(h - p)-version changes both h and p . Although there are currently several 
commercial codes available that implement the p- and (h - p)-versions (for 
instance MSC/PROBE, FIESTA, and the research code STRIPE), the problem 
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of what quadrature scheme to use has been treated only in an ad hoc manner. 
In this paper, we investigate in a systematic manner the effect of quadrature 
error on the accuracy of the finite element computations when various types of 
rectilinear and curved elements are used. 

Our first goal is to list some minimal requirements (analogous to the h- 
version rule mentioned above) on the quadrature scheme to ensure existence, 
uniqueness, and convergence of the approximations. These may be found in 
?3, for various quadrature schemes used for the p-version. Our main goal is 
to establish under sufficient conditions (also listed in ?3) that the optimal rate 
of convergence is achieved even under the effect of quadrature error. We deal 
with the case that the input data are smooth and the curvilinear elements used 
are obtained through sufficiently smooth mappings. For this case, we show that 
the asymptotic rate is preserved, essentially without any overintegration being 
required, both for smooth and singular solutions (?5). Section 6 contains some 
computational examples which illustrate our results. In this section, we also 
briefly investigate the effectivity of overintegration when distorted elements are 
used. 

Let us mention that there are some references [3, 13] that address the problem 
of numerical integration as applied to the spectral element method (which is 
related to the p-version). Our approach is broader, since it is not restricted to 
tensor-product elements (see Remark 5.1). 

2. THE P-VERSION FOR THE MODEL PROBLEM 

Let Q be a curvilinear polygonal domain in Rn, n = 1, 2, 3, and consider 
the problem 

Lu = f on Q, 
u=O onOQ, 

where 

Lu= E -taij - 

The variational form of this problem is 

(2.1) JU EHo'(Q), ( a(u, v)=( , v) Vv E Ho(Q), 

where 

a(u, v) = , Jaij 7 dx, (f, v) = fv dx. 

Here, we use the standard notation for Sobolev spaces Wo / (Q), 1 < ,B < oo, 
HO(Q) = Wa 2(Q), and Ho'(Q) I {u E H1(Q): u = 0 on OQ}. We will also 
use the usual notation 11 K, 1 Q and I , 1,,8 to denote the corresponding 
norms and seminorms, with the subscript ,B being dropped for fl = 2. 

We will assume that the functions aij(x) satisfy aij = aji and 

(2.2) jjajjjjo,,Q < A1 
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for a fixed constant Al. Here, a will be a sufficiently large number, a > . 
Also, the operator L is assumed to be uniformly elliptic, i.e., 

n n 

(2.3) E aij(x)4i1j > KcE VX c Rn, Vx E Q 
i,j=l i=l 

for some K > 0. 
Several regularity results are well known for the above problem (2.1). For 

the case that 0 Q is smooth (C??), the usual shift theorems hold, and we have, 
for k > 2, 

(2.4) UHk,1Q < CllfIlk-2,Q. 

For 0Q nonsmooth, (2.4) will only hold for k < ko, ko being determined by 
the domain. 

When Q c R2 is a curvilinear polygon, the solution consists of two parts, 
a smooth component ul for which (2.4) holds and a component u2 which 
arises from the singularities at the corners of the domain. More precisely, if V 
denotes the set of vertices v of Q, we have [10] 

(2.5) u = ul + u2, ul, u2 C Hol(), u2=Z UvXv, 
uEV 

where Xv is a C?? (or sufficiently smooth) cutoff function with support near 
v, and 

M N(l) 

(2.6) UV = dkl log rIkro"kl(0), 
1=1 k=O 

where a1 > 0, a1,+ > a1, N(l) > 0, qkl(O) is a C" (or sufficiently smooth) 
function, and (r, 0) are polar coordinates with origin at v. In the three- 
dimensional case, the situation is similar, but more complicated. 

To approximate the solution of problem (2.1) by the finite element method 
(FEM), we consider a fixed triangulation T of Q by elements Ki. These will 
be line segments in RI, triangles and quadrilaterals in R2, and tetrahedra 
and parallelepipeds in R3. We will also consider the corresponding curvilinear 
elements. The intersection Ki n Kj will be either empty, a common vertex, 
an entire side, or an entire face of Ki and Kj. We assume that every corner 
vertex of the domain Q is also a vertex of some Ki. 

For each type of element under consideration, we define a corresponding 
reference element. Accordingly, with I = [-1, 1], we define the reference in- 
terval, the reference square, and the reference cube by I, Q = 12, and C = J3, 
respectively. Also, we define by T the reference triangle with vertices (0, 0), 
(1, 0), (0, 1), and by B the reference tetrahedron with vertices (0, 0, 0), 
(0,0, 1), (0, 1,0), (1,0,0). 

Remark 2.1. We could consider other 3-d elements as well, like wedges and 
pyramids, for which results analogous to ours may be obtained. Some such 
elements are in use in 3-d p-version codes like STRIPE. 

We assume that for each K E T, there exists an invertible map FK such 
that K = FK(K), where K is the reference element corresponding to K, i.e., 
K = I, T, Q, B, or C. This mapping then establishes the correspondence 
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(vi: K -- R) +-, (v = v OF,?): K -, R) between the functions defined on K and 
K. In this paper, we will deal with the case that FK and FJ-1 are sufficiently 
smooth and the Jacobian JK (assumed to be positive everywhere) is bounded 
below, away from zero. Accordingly, we assume that there exists a constant A2 
such that, for all K c , 

(2.7) HIFKIj oo IIFIK llj,oo,K < A2, 0<j< M, 

(2.8) H1 JKHJQOj I 00 IIIJ,OO,K < A2, 0 < M< M- 1, 

where J1- 1 = (JK)1 is the Jacobian of FK- 1 and where M > 1 is large enough. 
In essence, assuming M is large ensures that the elements used are not distorted 
in any significant way, so that the convergence analysis proceeds similarly to the 
case that the FK are affine. We remark that for nonsmooth mappings, (2.7)- 
(2.8) may still hold, but the constant A2 may be very large (see the numerical 
example in ?6). 

Using (2.7)-(2.8) and the argument of Theorem 4.3.2 of [4], we see that for 
any ,B E [1, oC] and 1, 0< / < M, one has v c W1lA(K) x~ v c W1A(K) 
with 

(2.9) C1|V1ll5,65K < Ilfl1A K^ < C211VIIH1,8,K, 

where the constants Cl and C2 are independent of v and v but depend on 
1, ,B, and A2. Moreover, the norms in (2.9) may be replaced by seminorms 
when I= 0, 1. 

Now let { Up (K) }, p = 1, 2, ... , be a sequence of polynomial spaces defined 
on the reference element K such that 

(2.10) WI E Up, W2 C Uq X WIW2 C Up+q. 

We then define finite-dimensional spaces for p = 1, 2, 3, ... by 

Sp = {v C?(Q), VIK, oFK, C Up(Ki) VKi C T}, 

where KR is the reference element corresponding to Ki and Up(Ki) is the 
corresponding polynomial space. (Note that more than one type of space may 
be in use for the same type of reference element.) We also define Sp 1 0 = 
Sp n Ho (Q) . Then the p-version of the FEM to approximate the solution of 
(2.1) is given by 

(2.11) { a(up v) = (f,v) Vv c S0. 

It is well known that for (2.1 1) one has 

(2.12) Ilu - uplll,Q < C inf Hlu - vlll,Q. 
VESP,O 

Let us define the Ho' projection operator PP: Ho' (Q) - Sp ,o by 

(2.13) Vu Vv =jV(Plu).Vv VvESp,0. 

Then, similarly to (2.12), we have 

(2. 14) Il u-P _Ip uIIl, < C in5f II u - vII1j l, S. 
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To bound the right sides of (2.12) and (2.14), one needs subspaces with 
certain approximability properties. Let us describe the subspaces we consider. 

For K = I, Q, or C, we can take Up(K) = Qp(K), the set of polynomials 
of degree < p in each variable. For K = T or B, we take Up (K) = Pp (K), the 
set of polynomials of total degree < p . (Note that for K = I, Qp(I) = Yp V) .) For K = Q c R2, the choice Up (K) = Qp1(K) (serendipity elements) given by 

Q,p = 3{p Df XpX2, XI Xp} 

is also used in practice. However, it does not satisfy (2.10). We therefore treat 
this choice by noting that Qp_ - c p . We now add to our list of possible Up 's 
the choice Up(K) = 9p3(K) for K = Q (p > 1). With the above choices of 
Up(K), we have the following lemma. 

Lemma 2.1. For each integer I > 0, there exists a sequence of projections 
IT: Hl(k) -+ Up(K), p = 1, 2, 3, . such that 

Ilpv =v VvEUp(K), 
IIV-llVll < Cp-(r-s)11V11 rK, < S < / < r 

where C is a constant independent of p and v but dependent upon r and 1. 
Proof. The lemma has been proven for the 1 -d case in [2]. In 2-d, it follows 
from Lemma 3.1 of [15] for the cases Up = Qp (Q) and 9p(T). This proof 
generalizes easily to the 3-d case (as well as to Up = Qp1(Q)). O 

Remark 2.2. The restriction of I being an integer is not necessary. This has 
been proven in [2] for the 1-d case. 

The above lemma with I = 1 is used in the proof of the following theorem. 
Theorem 2.1. Let { Up (K)} be a sequence of polynomial spaces described above 
and let {Sp, o} be the corresponding spaces on Q. Then the sequence of projec- 
tions P: Ho(Q)-+ Sp,0(Q), p = 1, 2, 3, . defined by (2.13), satisfies 

IIV _ plvil Q, < Cp-(rl) IVHr , 1 < r 

with C a constant independent of p and v but dependent upon r and the 
constant A2. 
Proof. The two-dimensional case has been proven in [1], the argument from 
which can be generalized to the 3-dimensional case. A different proof of the 
n-dimensional case may be found in [7], the result being optimal up to arbitrary 
c>0. 0 

For the case that the solution u E Hk (a), we see by (2.12) and Theorem 2.1 
that 

(2.15) H u-uP1l1,Q < Cp (kl) IlUlk Q. 

Here, the constant C will depend upon A2. For nonsmooth mappings, C can 
be quite large, which effectively means that the above rate of convergence may 
not be observed for practically chosen discretization levels in such cases. 
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For nonsmooth domains, the rate of convergence is dominated instead by 
singularities of the form u, in (2.6). In the 2-d case, assuming that u-u, 
we have the estimate [1]: 

(2.16) inf jju-vjij,Q < Cjlogp Y1p-2a', 
vESP,O 

where y2 = N( 1) and where the constant C depends on dkl but is independent 
of p. Note that (2.16) gives twice the rate of convergence that can be derived 
using Theorem 2.1. 

Remark 2.3. Let us mention that if u is very smooth, the rate of convergence 
can be stronger than that in (2.15). For a wide class of C?? functions, one 
obtains exponential convergence (see, for example, [11]). 

3. QUADRATURE RULES 

The p-version introduced in the previous section, and the related results 
for it, assume that all integrations have been performed exactly. In practice, 
however, the integrals in the terms a(up, v) and (f, v) in (2.1) are usually 
evaluated numerically. We consider families of quadrature rules {Rp} defined 
on the master element K by 

Lp 

(3.1) fD (x) dx EC)IPV (bP) 
K 1=1 

This results in a quadrature rule R K over each K E T given by 
Lp 

(3.2) jv(x) dx r v (bP 
K 1=1 

where wa)?' K = JK(blP)CoP and blP K = FK(b'P). Now, if the various integrals in 
(2.1 1) are evaluated by quadrature rules, then instead of solving problem (2.1 1), 
one solves 

(3.3) 1i PO 
( * ) l ~~ap (ip ,v) (f ,v)p Vlv ESp, , 

where 

(3.4) ap(u, v)= ap, K(u, v) ZZ 1, W K E (-ai4 ) (b K), 
KET KET 1=1 i,j=1 

L 

(3.5) (f, v)p = (f, V)p,K = E E Zl,K(fv)(bl,K), 
KET KET 1=1 

where the dependence on p is understood in w1, K, b, K, and L. We remark 
that, although we have used the same quadrature rules to evaluate all the inte- 
grals, different quadrature rules may be used to evaluate different integrals in 
(2.11). 

For the master element K, let the associated polynomial space be Up (K). 
Then we restrict our attention to families of quadrature rules {Rp } that satisfy 
the following four assumptions: 

(A) 6()IP > O and b'P E K. 
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(B 1) There exists a constant Cl independent of p and v such that 

Lp 

@IPv(bl) <CllV0,K V E Up (K). 
1=1 

(B2) There exists a constant C2 independent of p and v such that 

Lp 

1=1 2 2 

where Up(K)={0i'/0x1, 1< i<n 1v c Up(K)} c Up(K) 
(B3) Rp is exact for all v E Um(K) with m = m(p) > mo(p). 
Obviously, (B1)-(B2) follow from (B3) when m > 2p, so that, when this 

happens, we may replace (B1), (B2), and (B3) by the single assumption: 
(B) Rp is exact for all v E Um(K) with m > 2p. 
However, (B) is not necessary for (B 1)-(B2) to hold (see examples below). In 

fact, it is easy to construct examples where (B1)-(B2) hold but (B) (or (B3)) is 
not satisfied for any m. The conditions (A) and (B2) guarantee "Vh ellipticity" 
in the sense of [4], while (B 1) and (B3) will be needed to derive our error 
estimates. Below, we list the minimum value of mo(p) for some rules. 

Remark 3.1. We see from (B2) that as p -+ oc, we must have Lp -+ oC . In fact, 
in 1-d, (B2) implies we must have Lp > p, since otherwise we may construct 
a v' E Up(K) = Pp-I(K) with roots at {b'P} for which (B2) is violated. This is 
in contrast to the h-version, where a fixed (composite) rule is used as h -- 0. 
In practice, however, p can be increased only up to a fixed value (for example, 
p < 8 in MSC/PROBE), so that one could use a fixed rule of sufficiently high 
precision. 

Let us describe some commonly used rules and see if they satisfy our assump- 
tions. 

Newton-Cotes rules. These rules (which can be used for the h-version for 
small p) are known to violate the positivity of the weights in (A) when p is 
large, and moreover have low degree of precision, i.e., m in (B3) is small. 
Hence we do not discuss them here. 

Gaussian rules for 9p (I). We consider Gauss-Legendre and Gauss-Lobatto 
rules, both of which satisfy (A) (see [6]). If Lp points are used, then these 
rules are, respectively, exact for polynomials of degree < 2Lp - 1 and 2Lp - 3. 
Hence, condition (B) is satisfied if, respectively, Lp > p + 1 or Lp > p + 2 . 

To see if this requirement may be relaxed, we first consider Gauss-Legendre 
rules. Let Lp = p (by Remark 3. 1, this is the minimum possible). Then (B2) 
obviously holds, with C2 = 1 . Also, by [6, p. 75], we have for some -1 < < 1, 

1 E ^12 22P+ I (p!) )4 d2P 2 (: 

0 K 1=1 1 (2p + 1)[(2p)!]3 dX2p 

which is positive, since the (2p)th derivative of v2 (vb c p(I)) is a positive 
constant on I. Hence, (B 1) holds with Cl = 1 . Therefore, the choice Lp = p 
will (minimally) satisfy the required assumptions, with m = mo(p) = 2p- 1 in 
(B3). Note that this is exactly the same minimum Lp that would work in the 
case of the h-version (see Theorem 4.1.6 of [4]). 
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Next, for Gauss-Lobatto quadrature, it has been shown in equation (3.9) of 
[3] that 

p+1 

(3.6) ?| 
P 

< 2(b) < CH2 
1=1 

for all v E Up(K) . Hence, the choice Lp = p + 1 satisfies (B 1), (B2), and (B3) 
(with m = mo(p) = 2p - 1), though (B) does not hold. 

Gaussian rules for QP(Q), QP(C). Given an Np-point rule on I, we may 
construct the corresponding tensor product rule on In which will have (Np)n 
points. When applied to Qp (In), these rules once again will be exact for the 
same degree as the 1-d case, so that the minimum Np required for (B) to hold 
is once again p + 1 and p + 2 for Legendre and Lobatto rules, respectively. 

We now examine the minimum NP required for (B 1 )-(B3) instead of (B) to 
hold. We observe that 

Up(In) = Qp(In) = Qp(In) ny (In) 

The dimension of Up (In) is therefore (p + 1)n - 1 . A necessary condition 
for (B2) to hold is unisolvency of the (Np)n points for Ujp(In), which gives 
NP > p + 1 for n > 1 . This shows that unlike the 1 -d case, we cannot relax the 
number of Legendre points to less than NP = p + 1 . This is exactly the same 
requirement needed in the h-version when n > 1 (see p. 205 of [4]). For this 
choice, (B3) will hold with the minimal mo(p) = 2p + 1 . (As noted above, this 
means that (B) holds.) 

For Gauss-Lobatto rules, it is shown in [3] that (3.6) holds for any n (with 
(p + 1) replaced by (p + 1 )n in the summation). Hence, we get the minimum 
requirement for (B1)-(B3) to be NP = p + 1 , with mo(p) = 2p - 1 . 

Rules for QP (Q)/ 9p (Q) . Since QP (Q) c Yp +1 (Q) and QP (Q), p (Q) c 
QP (Q) , we can, of course, use the rules for QP (Q) . However, this is not efficient, 
since a number of extra points are used, without raising m in (B)'. In [9], the 
problem of minimizing the number of quadrature points for 9p(Q) is analyzed 
and symmetrical rules are derived for m up to 21. Using the results of [9], 
we may now obtain the minimum LP required for the rule to be exact up to 
degree m (< 21), i.e., for condition (B) to hold. Note that theoretical results 
guaranteeing positivity of the weights or giving error estimates are not available. 

Rules for Yp(T). Various rules have been derived in this case, a survey 
of which may be found in [12]. Similar to the rules for Yp(Q), theoretical 
results are not fully developed, so that we use condition (B) instead of (B1)- 
(B3). In [8], the problem of deriving symmetrical rules with the minimum LP 
for (B) to hold has been investigated for m up to 20. These are significantly 
more economical than Gaussian product rules which are derived by mapping 
the tensor product rule for In onto T and have been used in MSC/PROBE. 

4. PRELIMINARY RESULTS 

We assume that (A) and (B 1)-(B3) hold. Let us define, for any K E T or for 
K = K, 

L 

EK(U) u 'udx - Z CI) ,Ku(bl K) 
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and 
EK(U, v) = (U, V)K -(U, V)P,K = EK(uv), 

where 

(U, V)K = J UVdx = (X)UX (X) d 

and (u, V)p,K is as defined in (3.5). Then 

(4.1) EK(U, v) =Ek(JKfi, V) 

Also, by (B3), 

(4.2) Ek(Ui, V) = 0 v1i E Um p(K), v E Up(K). 

Let [x] denote the integer part of x. We begin by proving a technical lemma, 
using Lemma 2.1. 

Lemma 4.1. Let K C Rn, n = 1, 2, or 3. Let y = [n ? 1]. Let u E HS(K) 

with s > y. Then the projection lp in Lemma 2.1 satisfies 

lu - pullo K < Cp-(s n/2)HuH11K. 

Proof. We note that by an interpolation result from [3], for 0 < e < 

(4.3) HIu_ 1- HyuHl0c" ? CHIu_ - HU112 Iu_ - PU,1 
Kp nl2I ,o, K _ C||Unp |2| -E, uK 1/ 

Also, by Lemma 2.1, for 0 < r < y < s, 

(4.4) lu - HPull K < Cp (s-r)HIUlIi.S 

The lemma follows by using (4.4) with r = n +? and r = n - c in (4.3). U 

Remark 4.1. By Remark 2.2, we may relax the restriction on y to y > n. 

Lemma 4.2. Let 0, V E UpU(K) and c E L,,(K). Then 

JE&(cq, V)1 ? C{lc 
- C1 ,~,KH-H0 O,KI-VHO,- + C-10j, $ - wiH, 0j-/iH10} 

for all c E Uq(K) and w, E Um-p-q(K), where C > 0 is independent of p and 
q, and mr-p - q >0. 
Proof. We have 

JE&(cb, Cg)J = I(cb, V)K - (co/, q')P, K 

(4.5)< I (c 
- 

-) 0, V) -I + I EK (-C V) I + I ((c--c) 0, V)P -^l 

for any c E Uq(K). Now for wI E Um-p-q(K), we have cwI E Um-p(K), so 
that by (4.2), 

(4.6) JEk(-Cq, /)J = |(c(O - wl), Vg)- - (C(O - wl), y) 

Next, using (B2), we have 

|(C( - WI), v)pK 

L L 

- | E6JI (C(k - W ) V)(bl) ?< I H0,0O, 6ji K ,( - 

(4.7) L 1/2 L 1/2 

C -W 1)2(b1)) 1 / 
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We may similarly bound 

(4.8) V(c-c*)& v')p ?I< C||c -C llo, xl1U0llO,- 
Next, by Schwarz's inequality, 

(4.9) |(c(O - WI), '')jfl < -ICIo0 0 ̂  WiHI0,jHIV'H0,. 
Similarly, 

(4.10) I(c - c)& v)jl < ?|c -CI0,, fll+llO, fll VIlO, 

The lemma follows from (4.5)-(4.10). U1 

Lemma 4.3. Let Q C Rn and y = [+ ? 1] be as in Lemma 4.1. Then for 
f E Hs(K), s > y, and v E Up(K), 

IEK (f, v)I < C(m p) (s-n/2) Ilf IsK|V |oK 

if the mapping FK satisfies (2.7) with M > s + 1. 
Proof. We have for K E z, by (4.1) and (4.2), 

EK(f, V) = Ek(JKf, D) = Ek(JKf-tb, '&) 

for any Wb E Um-p(K). Hence, 
L 

(4.11) IEK(f, V)I <? IIJKJ f W k||?,Z||V||K,f + 1 i ) (bl)( 
1=1 

Using (B2), we have 

L (L -1/2 L1/2 

Z / I (DJK J (- b l) |) < 6 j= (JKf _ ))2(b)) ( 
6 )l 2 ( ) 

C||JKf-t0l oHIID 10K 

Taking tb = py (JKf) and using Lemma 4.1, we get 

L 

(4.12) Z 1 6(JK - P)f(1)| < C(m(-p) (l) I/ )HJKfHI -Pfl O K^ 
1=1 

Also, by Lemma 2.1, 

(4.13) || JKJ- tbH10 K^II10, 
- < C(m p)s 1JKffIls, -I i 1, ' 

so that by (4.11)-(4.13), we have 

IEK(f, v)I < C(m _p)-(S n/2)lljKIl 1||V K 

< C(m -p) (sn/2) II K 

The lemma follows, using (2.8) and (2.9). U1 

5. CONVERGENCE ESTIMATES 

We now analyze the effect of numerical integration on the problem (2.1). 
Throughout this section, we will refer to the solutions u, up, and iup of prob- 
lems (2.1), (2.1 1), and (3.3), respectively. We begin by proving a lemma which 
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ensures the so-called " Vh-ellipticity" of the form ap (., *) under the assumptions 
on the numerical quadrature rule. We will use the notation Dp(x) to denote 
the row vector (9P(x),..., 9P (x)) for any function p: Rn -- R. Also, for 
P: Rn -- Rn, DP(x) will denote the Jacobian matrix of P at x and gDP(x) 
the corresponding Euclidean matrix norm. 

Lemma 5.1. Let the mappings FK satisfy (2.7) and (2.8) with M > 1. Then 
there exists a constant C > 0 such that 

CIVI2,Q < ap(v, v) Vv E Sp,O, 

with C independent of p. 

Proof. Let v E Sp,O. For any K E T, let VK = VIK, so that VK E Up(K). 
Using (2.3), we have (noting that c01,K > 0 by (A)), 

ap K(VK, VK)= L, 9K y,ai Xi Xj) (b)K) 

1=1 i=__(___ 

>K Z^I,K ( ) ) (bl,K) 

L n!K! 2_ 

> KZ 24\ )(bl) 
1=1 DFK(bl)ll2 j= 

as in equation (4.4.26) of [4]. This gives 

a~,K(vK,vK)? c L n /'D 2 

| JK I | oo,0 KIFK 12 E E JaX 
1,oo,K '1 i=1 

Using (B2) together with (2.7)-(2.9), we obtain 

C|K12 - 

ap, K (VK, VK) > I J KIFK12 CIVK 1 ,K 
1, oo, K 

Hence, 
ap(v, v) = ap,K(VK, VK) ? C V K = 2Q 

KET KET 

which is the desired result. U1 

Let us define the n x n matrix A = A(x) = [aij(x)]. Then we see that 

EK = Z 
EK (aij ~, , ) = EK((Du)A(Dv )T). 

i, j=1Ix 

Noting that 
Dw(x) = DWi(X)DF,k71 (x) 

for any w -+ tb, we see that 

EK = Ek(JK(DfDFT7l)A(DiDFK )T) 

(5.1) = Ek((DUi)B (DV) ) = ? Kbj 
i,j=1 

k 
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where 

(5.2) BK = [bfM] = JK(DFK )A(DFK). 

Denote B- {BK, KE e} = {[bf ], KE r}. We define 

(5.3) 81,t(B) = max JJbiJ1H,t K^ 

with the subscript t being dropped when t - 2. 
-K -K 

Lemma 5.2. Let BK = [bij1], bij E Uq(K). Then 

Pip -U j < c 
I ZKETEK(f, Up Up) + -(B-B)JJuJ, 

+ /o,o(B)(Iu-uplHl,Q ? ||u-Prlulll,Q)}, 

where r = m - p - q and Pr'u is defined by (2.13). 
Proof. Let v E Sp,O. Then from (2.1), (2.11), and (3.3), we get 

ap(ip - up, v) = a(up, v) - ap(up, v) + (f, v)p - (f, v) 

= 
{xEK )aij P-) -EK(f, V) 

Using (5.1), we have 

E = ZE K = ZI Z: EK ( uij Ov'\ 
KET KET i,j=l axi Axj) 

KET i,j=1 

Applying Lemma 4.2, we obtain 

E < C l 
K {bfj i T-b 0, Do | a x4 ao K 

KET i,j= l I K^ K K 

?H1bijiH0 ' Pr Fup} ooK aOXi aO,K 

where we have taken w1 = 0 P up, with Pr' as defined in (2.13). This gives, 
using (2.9), 

(5.4) E < C{flo,O(B-B)|luplll,Q|lvlll,Q ? flo,O(B)Hlup-Pr1upill,QIIVHil,Q} . 

Now, using the boundedness of the Pr' projection, we have 

(5.5) 11up-Prluph'u -< |u -uph|u + |u -PrIuIlo + ||Prl(u-up)||l o 

< C(Hlu - uph1 || ? u - PruHlli,Q). 
Also, 

(5.6) IIUPh'u < CIuIHl,uQ. 
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Combining the above, we get 

ap(iap-up,v)<C{ EK(f, v) ?f+ lo,o(B - B)IIuIl,2IQIvIl,lQ 
(5.7) KET 

+flo,00(B)(Iu-uplll,Q ? 2llu-PrlUlll,Q)JHVIHl,lQ. 

The lemma follows by putting v = up - up in (5.7) and using the " Vh-ellipticity" 
of Lemma 5.1. u1 

We now prove two theorems which show that the rate of convergence, us- 
ing the p-version, essentially remains unchanged under the effect of numerical 
quadrature. 

Theorem 5.1. Let f E HS(Q) with s > n , and let the solution u of (2.1) be in 

Hk(j2), k > 1 . Let b[K E HI(K) for each i, j, K, with 1 > n . Let ip denote 

the solution of (3.3), with the quadrature rule satisfying (A) and (B1 )-(B3), where 
r = min{p, m - p - q} > O in (B3). Then 

(5.8) lu-Up IIp1,Q < C{(m -p)-(s-nf/2)IIfIIsn + q-(?-n/2)fl(B)Il,j2 

+ r-(k-1)(flo, (B) + q-(I-n/2)?, (B))|IUIIkj2b 

where the constant C is independent of u, m, p, and q. 

Proof. By the triangle inequality, we have 

(5.9) Hlu - iplPl,? < Cllu - upHll,QH + 1up - uplHl,Q. 

Using Lemma 5.2, we get 

(5.10) 11up-upH1l,Q < C{El + E2 + E3}, 

where 

(5.11) E = IEKETEK(f, I'P - UP)I < C(m p)-(s-nl2)Ilfls, 
ii - upHI,' 

by Lemma 4.3. Also, 

E2 = max Ilb!K - bjIIHO , -IIuIl ,Q. 
i, j,K ij ii0 oK 

Taking bij = fYbfK as in Lemma 4.1, we get 

(5.12) E2 < Cq- (1-n/2) flI(B)IIlj2l1,Q. 

Finally, using the above bound for fbo, O(B - B), we find 

E3 = A,oo(B)(IHu - upl, + ?lu - Pr1UHIl,) 
(5.13) < C(fio O (B) +q -(I/2) flI(B)) inf u u- I l,Q, 

V ESr, o 

wherewehaveused(2.12)and(2.14)tobound IIu-upIIl,Q and IIu-Pr1uIIl,Q, 
respectively. We can now bound the infimum in (5.13) by Cr-(k-1)HIuHIk,Q. 
The theorem follows by (5.9)-(5.13) and (2.14). Fl 
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Corollary 5.1. Let f and u be as above. Suppose the aij E Ho(Q) satisfy 
(2.2) and the mappings FK satisfy (2.7)-(2.8) with M > 1 such that / = 

min{a, M} > n . Then 

(5.14) u-El - 1,Q = O((m p)-(s-nl/2) + q-(1-n/2) + r-(k?-)) 

Proof. Using (2.2), (2.7), (2.8) together with the definition (5.2) of B, we note 
that 

AIl(B) , flo, (B) < Cx 

where C is a constant depending on Al and A2. The assertion (5.14) then 
follows from (5.8). u1 

Let us now use (5.14) to investigate the rate of convergence for the case that f 
is very smooth (which occurs frequently in practice). We assume that m 2p 
or larger, which, as seen in ?3, holds for practically chosen quadrature rules. 
Then we see that 

(m - p)-(S-nl/2) p-(s-nl/2) = o(p-(k-1) 

in (5.14), provided s - n > k - 1. Similarly, if the mappings FK and the 
coefficients aij (x) are sufficiently smooth, we may assume i - n > k - 1. 
Taking q = P2 (for instance) then gives 

q-(l-n/2) =p (I-n/2) p ((p)(k-1)) 

r(k-1) - ((p)(k1)) 

so that using (5.14), we obtain 

||u iph1,Q = ? ((P2)( )) = 

i.e., the asymptotic order of convergence achievable by exact integration (equa- 
tion (2.15)) is preserved when numerical quadrature with m 2p is used. 

In the previous analysis, one can also take q = pC, where E = (k- 1)/(1- n). 
Then, with m = 2p + q, we have 

q-(1-n/2) = p-(k-1) r-(k-1) = -(k-1) 

so that when E is small, there is no deterioration in convergence (a possible 
overintegration by one point may be required to ensure m > 2p + q). Note that, 
if aij and JK are constant functions, instead of (5.14), we get the estimate 

(5.15) Ilu - iUp 1,Q = O((m p)-(s-nl/2) + (m _ p)-(k-l)). 

If I is small, then the above analysis suggests that overintegration by an 
amount large enough to ensure that m > 2p+p(k-1)/(1-n/2) would be sufficient to 
preserve the error bound. Indeed, for the case that the lack of smoothness lies in 
the coefficients ai1 (x) , the numerical examples in [ 13] show that overintegration 
does reestablish the expected accuracy (though m does not have to be that 
large). If, however, the Jacobian is nonsmooth, then in general, the error of best 
approximation also deteriorates, and this cannot improve with overintegration. 
In ?6, we consider some examples of nonsmooth mappings and investigate how 
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they respond to overintegration. Let us mention that even if the asymptotic rate 
of convergence Cp-(k-1) is regained, the constant C (which depends on Al 
and A2) may be quite large. Let us also remark that the amount of smoothness 
we require on f in the above estimates is probably excessive (see, e.g., [16], 
where sharp conditions on the smoothness required on f (in the context of the 
h-version) are derived). 

Suppose now that Q c R2 is a polygon such that the rate of convergence for 
up (using exact integration) is governed by the singularities, i.e., (2.16) holds. 
Then, if f, ai, and FK are smooth enough, we have the following theorem, 
which once again shows that the rate of convergence of u - up Hi, Q is preserved. 

Theorem 5.2. Let the conditions of Theorem 5.1 hold, except that u, the solution 
of (2.1), is of the form u, in (2.6). Then, with r = min{p, mr-p- q- 

IIu - UP 1 1, Q = O((m - p)-(s-n/2) + q-(1-n/2) +? log j1Yl j-2ali) 

Proof. The proof is identical to that of Theorem 5.1, except that the term E3 
is now bounded using (2.16) instead. U1 

Once again, it is observed that if m 2p and if f and bk are smooth 
enough, we can show 

(5.16) Ilu - ip 111,Q < Cl logplylp-2a, 

i.e., the asymptotic rate of convergence from (2.16) is preserved. Let us also 
remark that if u is very smooth (as in Remark 2.3) and the error IIu - p III,Q 
is exponential (say), then this will again be reflected in the error Iu - Hp 1,I , 
provided the first two terms in (5.14) are sufficiently small. 

Remark 5.1. Theorem 5.1, when applied to Gauss-Lobatto quadrature over rect- 
angular meshes (in Rn), gives an estimate similar to the central result in [13]. 
The analysis in [13] (and in [3]) depends strongly upon a sharp estimate of the 
interpolation error at Gaussian quadrature points. Consequently, it is not read- 
ily applicable to quadrature rules for which such interpolation estimates have 
not been developed (for the rules in [8, 9], for example), or to non-Gaussian 
rules. Moreover, the approach in [13] assumes tensor product elements (as 
used in spectral element methods) and does not carry over in an obvious way 
to elements like triangles and tetrahedra, which are common in finite elements. 
Finally, estimates like (5.16), showing the doubling of the convergence rate for 
singular solutions, do not easily follow. Our approach does not require an es- 
timate of interpolation error at quadrature points and hence can be applied to 
these situations as well. 

6. NUMERICAL RESULTS 

In this section, we present the results of some numerical computations related 
to the one-dimensional model problem 

(6.1) -u"(x) = f(x), 0 < x < 1, ui(O) = u(1) = 0. 

We put (6.1) into the variational form (2.1) and then employ the p-version, 
using a. single element on (0, 1) which is the image of the reference element 
(-1, 1) under the mapping x - F() . Obviously, a smooth affine choice exists 
for the mapping F in this one-dimensional case. However, by choosing F to 
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Polynomial Degree p 

FIGURE 1. The errors e1 and e2 for various F. (a) 
quadratic, e = 0.01; (b) quadratic, e = 1.0; (c) affine. 

be a nonlinear mapping (and varying its smoothness), we can model the case 
of higher dimensions, where the use of more complicated mappings is usually 
unavoidable. We take F to be 

(6.2) (4) (2 + e) - 'o 

For a = 1, this gives an affine mapping. For a $ 1, we obtain a nonlinear 
mapping whose smoothness depends on the parameter e. For e close to 0, 
the inverse of the Jacobian will be very large at I = -1, giving a nonsmooth 
mapping. 

Suppose that f is chosen so that the exact solution is given by 

(6.3) u(x) = x sin 7Tx. 

Let el = Ilu- uplll be the error when up is the finite element solution ob- 
tained through exact integration (approximated here by a 4000-point composite 
Simpson's rule). Let e2 = IIu - HpIII be the error, where iup is the finite ele- 
ment solution obtained by using the p-point Gauss-Legendre rule (the minimal 
possible) for the stiffness matrix (the load vector being calculated exactly). In 
Figure 1, we have plotted e1 (solid lines) and e2 (broken lines) on a log-log 
scale against p for three choices of the mapping F. 

First, the curves (c) represent the case where F is affine (a = 1). As ex- 
pected, it is observed that e1 and e2 are essentially identical. This agrees very 
well with the results of ? 5, and shows that p-point quadrature for the stiffness 
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FIGURE 2. The effect of overintegration when a = 1.8 
and e = 0.1 . (a) p points; (b) p + 1 points; (c) p + 3 
points; (d) 2p points; (e) exact. 

matrix is sufficient to preserve the error. Notice that the convergence rate is 
exponential, since the exact solution is analytic (see Remark 2.3). 

In (b), a smooth quadratic mapping is chosen with a = 2 and e = 1.0. 
It is observed that once again, el and e2 are extremely close, as expected by 
Theorem 5.1. In fact, similar to the case when F is affine, no overintegration 
is required to make e2 of the same order as el . This shows that when the 
mapping is smooth, we can take q very small in (5.14) (so that we essentially 
get (5.15)), and the rate of convergence will still be preserved. Notice, however, 
that the magnitude of the error has become larger when we compare el for 
the quadratic case to that for the affine case. This is due to the fact that using 
a quadratic F has led to a deterioration of the approximability of the trial 
functions, a phenomenon that is unrelated to the accuracy of the quadrature 
scheme employed. 

As e is decreased (i.e., the mapping is made less smooth), two effects occur. 
The dominant effect, seen from curves (a) (where a = 2 and e = 0.01), is that 
the "exact" error el becomes worse, owing to the degradation of the approx- 
imability. However, in addition, the error e2 deteriorates even further, and a 
shift occurs between the graphs of el and e2 . Overintegration will now help in 
reducing the difference between e2 and el (which grows larger as e decreases), 
but will obviously not help in decreasing el . 

The above example shows that when the mapping is nonsmooth, the use of 
overintegration may only have a limited effect in decreasing the error. This is 
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FIGURE 3. The effect of overintegration when a = 2 
and e = 0.01. (a) p points; (b) 2p points; (c) p2 

points; (d) exact. 

because the deterioration in the approximability properties of the underlying 
subspaces may have a more serious effect, independent of the quadrature used. 
However, there are situations where it is the lack of accuracy of the quadrature, 
rather than the approximability, which plays the dominant role. As an example, 
we consider the case where f is chosen so that instead of (6.3), the exact 
solution is given by 

(6.4) u(x) = sin{4[(cx + - (1 + e)]}, 

where c = (2 + e)a - ea. We take F to be given by (6.2) again. Using this 
combination of F and u, we see that 

(6.5) u(F(4)) = sing . 

Hence, u(F(4)) is very smooth on (-1, 1) and can therefore easily be approx- 
imated by the trial functions. In effect, this means that approximability is not 
an issue here. 

In Figure 2, we have plotted the results of various computations, using a = 

1.8 and e = 0.1. The solid line (e) once again represents el, the error when 
exact integration is used, while the broken lines (a), (b), and (c) represent the 
errors with Gauss-Legendre quadrature using respectively p, p + 1, and p + 3 
points on the stiffness matrix (the load vector being calculated exactly once 
more). It is observed that there is a significant loss in the convergence rate, 
owing to the quadrature rule being insufficiently accurate. Using 2p points, 



NUMERICAL QUADRATURE IN THE FINITE ELEMENT METHOD 19 

however, restores the rate of convergence, as is observed from curve (d), which 
is identical to curve (e). 

A question that arises from the above calculation is whether there is a quadra- 
ture rule that would be accurate enough to work uniformly for all mappings (i.e., 
all a and e). The answer seems to be no, as observed from Figure 3. Here, we 
have taken a = 2 and e = 0.01 . The solid line (d) represents exact integration, 
for which the error is essentially identical to the previous case, since the exact 
solution is once again given by (6.4). Curves (a), (b), and (c), respectively, rep- 
resent quadrature with p, 2p, and p2 points. It is seen now that practically 
no convergence is observed with p points, and to recover the exponential rate 
of convergence, p2 points are needed. This number will increase further as e 
is made smaller. 

We note that in Remarks 3.2 and 3.3 of [13], it was stated that a loss of reg- 
ularity in F(l) induces a loss of regularity in u(F(l)), so that overintegration 
will not help in these cases. However, our example above shows that a non- 
smooth F(4) can do just the opposite as well: it can increase the smoothness 
of u(F(4)) . In fact, this is the idea used to treat singularities by the well-known 
"quarter-point mapping" in the h-version and by the "method of auxiliary map- 
pings" (see, e.g., [14]) in the p-version. In such situations, as is illustrated by 
the above example, overintegration can be particularly useful in dealing with 
the effect of nonsmooth mappings. 
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